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Abstract—THIS PAPER IS ELIGIBLE FOR THE STU-
DENT PAPER AWARD. The optimal joint source-channel coding
scheme for transmission of correlated sources over multiple-
access-relay channels (MARCs) is an open problem. Here, this
problem is studied in the presence of arbitrarily correlated
side information at both the relay and destination. Since each
transmitter observes a single source sequence, the admissible joint
distributions of the sources and channel inputs must satisfy a
Markov relationship which restricts the statistical dependence of
the channel inputs. This observation is used jointly with the new
data processing inequality proposed by [Kang and Ulukus, 2011]
to derive two new sets of single-letter necessary conditions. These
new conditions are shown to be at least as tight as the previously
known ones, and strictly tighter than the cut-set bound.

I. INTRODUCTION

The multiple-access-relay channel (MARC) is a multiuser
network in which several sources communicate with a single
destination, assisted by a common relay [1]. We study lossless
transmission of arbitrarily correlated sources over MARCs,
assuming that both the relay and the destination have access
to side information that is correlated with the sources. This
model may represent cooperative transmission of correlated
observations to an access point over wireless sensor networks.

The realization of a random source can be reliably trans-
mitted over a memoryless point-to-point (PtP) channel if its
entropy is less than the channel capacity [2]. Conversely, if
the source entropy is larger than the channel capacity, the
source cannot be reliably transmitted over the channel. This
result tells us that the optimal end-to-end performance can
be achieved by separate source-channel coding, that is, by
first compressing the source at a rate equal to its entropy,
and then transmitting the compressed bits over the channel
using a capacity-achieving channel code. It is well-known
that the optimality of separate design does not generalize to
multi-user networks [3], and in general, optimal performance
requires a joint design of the source and channel codes. An
important technique for joint source-channel coding (JSCC)
is the correlation preserving mapping (CPM) technique, intro-
duced in [3] for the transmission of correlated sources over
discrete, memoryless (DM) multiple access channels (MACs).
In [6] and [7] we applied the CPM technique to DM MARCs
and proposed four new joint source-channel coding (JSCC)
schemes for reliable transmission of correlated sources over
DM MARCs. Each of these schemes implements a different

This work was partially supported by the European Commission’s Marie
Curie IRG Fellowship PIRG05-GA-2009-246657 under the Seventh Frame-
work Programme, and by the Israel Science Foundation under grant 396/11.

combination of Slepian-Wolf source coding and the CPM
technique. It is shown in [7] that these four schemes constitute
four different sets of sufficient conditions, not necessarily
superior to each other.

Here we focus on the necessary conditions for reliable
transmission of correlated sources over DM MARCs. Such
conditions were previously derived in [8] and [9]. Observe
that the admissible joint distributions of the sources and the
respective channel inputs for the MARC (and for the MAC),
must satisfy a Markov relationship which reflects the fact that
the channel inputs at the transmitters are correlated only via
the correlation of the sources. This fact is not accounted for in
the conditions in [9]. On the other hand, while [8] established
necessary conditions which account for the above constraint,
these conditions are based on n-letter mutual information
expressions, and therefore they are not computable. n-letter
necessary conditions for transmission of correlated sources
over MAC were originally derived in [3]. In [4], Kang and
Ulukus used spectral analysis to introduce a new set of single-
letter necessary conditions for reliable transmission of corre-
lated sources over MACs, which both accounts for the Markov
relation and leads to computable single-letter conditions.
Main Contributions

We derive three new sets of single-letter necessary condi-
tions for reliable transmission of correlated sources over DM
MARCs. The first set is in the spirit of a MAC bound for the
classic relay channel, while the other two are in line with the
broadcast bound [10, Ch. 16]. Similarly to [4], the proposed
sets take into account the Markov relation between the sources
and the channel inputs, which tightens the conditions with
respect to the cut-set bound. The proposed conditions are
shown to be at least as tight as the ones derived in [9], and
not equivalent to each other. Furthermore, through a numerical
example, we show that the proposed necessary conditions are
strictly tighter than the cut-set bound [10, Ch. 18.1].

This paper is organized as follows: The system model and
notations are introduced in Section II. In Section III we give
some preliminaries, based on [4]. The new sets of necessary
conditions are presented in Section IV. A numerical example
is given in Section V, and the paper is concluded in Section VI.

II. NOTATIONS AND MODEL
In this work, we denote discrete random variables (RVs)

with capital letters, their realizations with lower case letters,
and their alphabets by the respective calligraphic letters. We
use |X | to denote the cardinality of a finite, discrete set X , and



Fig. 1. The multiple-access-relay channel with correlated side information.
(Ŝn

1 , Ŝ
n
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2 ) at the destination.

pX(x) to denote the probability mass function of a discrete
RV X . We use boldface letters, e.g., x, to denote vectors, and
doublestroke font to denote matrices , e.g., P. H(·) is used to
denote the entropy of a discrete RV, I(·; ·) is used to denote
the mutual information between two RVs, see [10, Ch. 2], and
X ↔ Y ↔ Z is used to denote a Markov relationship between
X,Y and Z, as defined in [10, Notation]. Finally, X ⊥⊥ Y is
used to denote that X and Y are statistically independent, N+

is used to denote the set of positive integers, and φ is used to
denote the empty set.

The MARC consists of two transmitters, a receiver (desti-
nation) and a relay. Transmitter i, i = 1, 2, observes source
sequence Sni . The objective of the receiver is to losslessly
reconstruct the source sequences observed by the two transmit-
ters, with the help of the relay. The relay and the receiver each
observes its own side information, denoted by Wn

3 and Wn,
respectively, see Figure 1. The source and side information
sequences, {S1,k, S2,k,Wk,W3,k} ∈ S1×S2×W ×W3, k =
1, 2, . . . , n, are arbitrarily correlated at each sample index
k according to the joint distribution p(s1, s2, w, w3), and
independent across different sample indices. All nodes know
this joint distribution.

For transmission, a DM MARC with inputs Xi ∈ Xi, i =
1, 2, 3, and outputs Y ∈ Y, Y3 ∈ Y3, is available. The MARC
is causal and memoryless in the sense of [1, Eqn. (1)]. A
source-channel code for the MARC with correlated side infor-
mation consists of two encoding functions at the transmitters:
f
(n)
i : Sni 7→ Xni , i = 1, 2, a decoding function at the

destination, g(n) : Yn×Wn 7→ Sn1 ×Sn2 , and a set of n causal
encoding functions at the relay, x3,k = f

(n)
3,k (yk−13,1 , wn3,1), k =

1, 2, . . . , n. Observe that the code construction restricts the
valid channel input distributions to obey the Markov chain

X1 ↔ Sn1 ↔ Sn2 ↔ X2. (1)
Let Ŝni , i = 1, 2, denote the reconstruction of Sni at the

receiver. The average probability of error of a source-channel
code for the MARC is defined as P (n)

e , Pr
(
(Ŝn1 , Ŝ

n
2 ) 6=

(Sn1 , S
n
2 )
)
. The sources S1 and S2 can be reliably transmitted

over the MARC if there exists a sequence of source-channel
codes such that P (n)

e → 0 as n → ∞. Next, we recall some
results from [4].

III. PRELIMINARIES

Let X ∈ X , and Y ∈ Y , be two discrete ran-
dom variables with finite cardinalities. The joint probabil-
ity distribution matrix PXY is defined as PXY (i, j) ,
Pr (X=xi, Y =yj) , {xi}|X |i=1 ∈X , {yj}

|Y|
j=1 ∈Y . The marginal

distribution matrix of an RV X is defined as the diagonal
matrix PX such that PX(i, i) = Pr (X = xi) , xi ∈ X ;
PX(i, j) = 0, i 6= j. This marginal distribution can also
be represented in a vector form denoted by pX . The i’th
element of pX is pX(i) , Pr (X = xi). The conditional joint
probability distribution matrix PXY |z is defined similarly.

Let P̃XY , P
− 1

2

X PXY P
− 1

2

Y denote the spectral repre-
sentation of the matrix PXY , and define the vector p̃X as
p̃X = p

1
2

X , where p
1
2

X stands for an element-wise square
root of pX . The conditional distributions P̃XY |z and p̃X|y
are defined similarly.

Note that not every matrix P̃XY can correspond to a given
joint distribution matrix PXY . This is because a valid joint
distribution matrix PXY must have all its elements to be
nonnegative and add up to 1. A necessary and sufficient
condition for P̃XY to correspond to a joint distribution matrix
PXY is given in the following theorem.

Theorem. ([4, Thm. 1]) Let PX and PY be a pair of marginal
distributions. A nonnegative matrix PXY is a joint distribution
matrix with marginal distributions PX and PY if and only if
the singular value decomposition (SVD) of the nonnegative
matrix P̃XY satisfies

P̃XY = MDNT = p
1
2

X

(
p

1
2

Y

)T
+

l∑
i=2

σiµiν
T
i , (2)

where M , [µ1,µ2, . . .µl] and N , [ν1,ν2, . . .νl] are
two matrices such that MTM = NTN = I, D ,
diag[σ1, σ2, . . . , σl]

1, where l = min{|X |, |Y|}; µ1 =

p
1
2

X ,ν1 = p
1
2

Y , and σ1 = 1 ≥ σ2 ≥ · · · ≥ σl ≥ 0. That is, all
the singular values of P̃XY are non-negative and smaller than
or equal to 1, the largest singular value of P̃XY is 1, and its
corresponding left and right singular vectors are p

1
2

X and p
1
2

Y .

Next, we define the set of all possible conditional distribu-
tions p(x1, x2|s1,1, s2,1) satisfying the Markov chain (1):

BX1X2|S1S2
,



p(x1, x2|s1,1, s2,1) :
∃n ∈ N+, p(x1|sn1 ), p(x2|sn2 )
s.t. p(x1, x2|s1,1, s2,1) =∑
sn1,2∈S

n−1
1 ,sn2,2∈S

n−1
2

p(x1|sn1 )p(x2|sn2 )p(sn1 , s
n
2 )

p(s1,1, s2,1)


,

where p(sn1 , s
n
2 ) =

∏n
k=1 p(s1,k, s2,k). Note that as n can be

arbitrarily large, optimization over the set of all conditional
distributions p(x1|sn1 ) and p(x2|sn2 ) for all positive integers n
is computationally intractable. Therefore, we are interested in
identifying a larger set of probability distributions, whose char-
acterization does not depend on n. Since this new set includes
the original set of probability distributions, the conditions will
still be necessary, and the computations become tractable.

Let σi(A) denote the i-th singular value of the
matrix A. The following theorem characterizes con-
straints on σi(P̃X1X2), σi(P̃X1X2|s1,1), σi(P̃X1X2|s2,1) and

1We use diag[a] to denote a rectangular matrix whose diagonal elements
are the elements of the vector a, and all off-diagonal elements are zero.



σi(P̃X1X2|s1,1,s2,1), and thereby gives a necessary condition
for the n-letter Markov chain (1):2

Theorem. ([4, Thm. 4]) Let (Sn1 , S
n
2 ) be a pair of length-n

independent and identically distributed (i.i.d.) sequences and
let the random variables X1 and X2 satisfy the Markov chain
(1). Let S1,k and S2,j be arbitrary elements of Sn1,1 and Sn2,1
respectively, that is, k, j ∈ {1, 2, . . . , n}, then

σi(P̃X1X2|s1,k,s2,j ) ≤ σ2(P̃S1S2
), 2 ≤ i. (3)

Now, we define the set B′X1X2|S1S2
as follows:

B′X1X2|S1S2
,



pX1,X2|S1,S2
(x1, x2|s1,1, s2,1) :

∀(s1,1, s2,1) ∈ S1 × S2
σi(P̃X1X2) ≤ σ2(P̃S1S2) i ≥ 2

σi(P̃X1X2|s1,1) ≤ σ2(P̃S1S2
) i ≥ 2

σi(P̃X1X2|s2,1) ≤ σ2(P̃S1S2
) i ≥ 2

σi(P̃X1X2|s1,1,s2,1) ≤ σ2(P̃S1S2) i ≥ 2


.

Note that the set B′X1X2|S1S2
is invariant to the symbol

index, that is, s1,1 and s2,1 can be replaced by s1,k and
s2,k for any k ∈ {2, 3, . . . , n}. [4, Thm. 4] gives a nec-
essary condition for the n-letter Markov chain (1), and
therefore BX1X2|S1S2

⊆ B′X1X2|S1S2
. Furthermore, the set

B′X1X2|S1S2
is characterized by the singular values of the

matrices P̃X1X2 , P̃X1X2|s1,1 , P̃X1X2|s2,1 and P̃X1X2|s1,1,s2,1 .
Therefore, while the set BX1X2|S1S2

is defined in terms of
infinitely many conditions, the set B′X1X2|S1S2

is defined with
only a finite number of spectral conditions.

IV. NECESSARY CONDITIONS

In this subsection we present the three new sets of necessary
conditions for reliable transmission of correlated sources over
DM MARCs.
A. A MAC Bound

The first new set of necessary conditions is a reminiscent
of the so-called “MAC bound” for the relay channel, [10, Ch.
16], and takes into account (1).
Theorem 1. Any source pair (S1, S2) that can be transmitted
reliably over the DM MARC with receiver side information
W , as defined in Section II, must satisfy:

H(S1|S2,W )≤ I(X1, X3;Y |X2, S2,W,Q) (4a)
H(S2|S1,W )≤ I(X2, X3;Y |X1, S1,W,Q) (4b)
H(S1, S2|W )≤ I(X1, X2, X3;Y |W,Q), (4c)

for a joint distribution that factorizes as
p(q)p(s1, s2, w)p(x1, x2|s1, s2, q)×

p(x3|x1, x2, s1, s2, q)p(y|x1, x2, x3), (5)
with |Q| ≤ 4, and for every q ∈ Q,
p(x1, x2|s1, s2, Q = q) ∈ BX1X2|S1S2

⊆ B′X1X2|S1S2
. (6)

Proof: The proof is given in Appendix A.
If the sources and the side information obey the Markov chain
S1 ↔W ↔ S2, then we have the following corollary:
Corollary 1. Let (S1, S2) be a source pair that satisfies the
Markov relationship S1 ↔ W ↔ S2. If (S1, S2) can be
transmitted reliably over the DM MARC with receiver side

2Here we present a simplified version of [4, Thm. 4].

information W , as defined in Section II, then (S1, S2,W ) must
satisfy the constraints:

H(S1|W ) ≤ I(X1, X3;Y |X2, S2,W,Q) (7a)
H(S2|W ) ≤ I(X2, X3;Y |X1, S1,W,Q) (7b)

H(S1|W ) +H(S2|W ) ≤ I(X1, X2, X3;Y |W,Q), (7c)
for a joint distribution that factorizes as

p(q)p(w)p(s1|w)p(s2|w)p(x1, x2|s1, s2, q)×
p(x3|x1, x2, s1, s2, q)p(y|x1, x2, x3), (8)

with |Q| ≤ 4, and for every q ∈ Q,
p(x1, x2|s1, s2, Q = q) ∈ BX1X2|S1S2

⊆ B′X1X2|S1S2
. (9)

Remark 1. [4, Thm. 2] implies that if S1↔W↔S2 then
σ2(P̃S1S2)≤σ2(P̃S1W )σ2(P̃WS2). Therefore, characterizing
the set B′X1X2|S1S2

based on the Markov relationship S1↔W↔
S2, that is replacing σ2(P̃S1S2

) with σ2(P̃S1W )σ2(P̃WS2
),

gives a less restrictive set of sufficient conditions.
Remark 2. Corollary 1 can be specialized to [11, Thm. 5.2],
which established the optimality of separation for MAC with
correlated sources and the Markov chain S1 ↔ W ↔ S2.
This can be done by setting X3 = φ and replacing (Q,W )
with Q̄. Then, following arguments similar to the proof of the
converse part of [11, Thm. 5.2], it follows that (8) becomes
p(s1, s2, q̄)p(x1|s1, q̄)p(x2|s2, q̄)p(y|x1, x2). Furthermore, in
this case, the right hand sides (RHSs) of (7) are maxi-
mized by p(xi|si, q̄) = p(xi|q̄), i = 1, 2, which implies that
p(x1, x2|s1, s2, Q = q) ∈ B′X1X2|S1S2

.

B. A Broadcast Bound
The next two new sets of necessary conditions are a

reminiscent of the so-called “broadcast bound” for the relay
channel [10, Ch. 16].
Proposition 1. Any source pair (S1, S2) that can be transmit-
ted reliably over the DM MARC with relay side information
W3 and receiver side information W , as defined in Section II,
must satisfy the constraints:

H(S1|S2,W,W3)≤ I(X1;Y, Y3|S2, X2,W, V ) (10a)
H(S2|S1,W,W3)≤ I(X2;Y, Y3|S1, X1,W, V ) (10b)
H(S1, S2|W,W3)≤ I(X1, X2;Y, Y3|W,V ), (10c)

for a joint distribution that factorizes as
p(v, s1, s2, w, w3)p(x1, x2|s1, s2, v)×

p(x3|v)p(y, y3|x1, x2, x3), (11)
with |V| ≤ 4.

Proof: The proof is given in Appendix B.
Remark 3. [4, Thm. 4] requires (Sn1 , S

n
2 ) to be a pair of i.i.d

sequences of length n. However, as V n is not an i.i.d sequence
then (Sn1 , S

n
2 , V

n) is not a triplet of i.i.d sequences. Hence, it
is not possible to use the approach of [4] to tighten Prop. 1. It
is possible, however, to establish a different set of “broadcast-
type” necessary conditions which benefits from the results of
[4]. This is stated in Thm. 2.
Theorem 2. Any source pair (S1, S2) that can be transmitted
reliably over the DM MARC with relay side information W3

and receiver side information W , as defined in Section II, must
satisfy the following constraints:



H(S1|S2,W,W3) ≤ I(X1;Y, Y3|S2, X2, X3,W,Q) (12a)
H(S2|S1,W,W3) ≤ I(X2;Y, Y3|S1, X1, X3,W,Q) (12b)
H(S1, S2|W,W3) ≤ I(X1, X2;Y, Y3|X3,W,Q), (12c)

for a joint distribution that factorizes as
p(q)p(s1, s2, w, w3)p(x1, x2|s1, s2, q)×

p(x3|x1, x2, w3, q)p(y, y3|x1, x2, x3), (13)
with |Q| ≤ 4, and for every q ∈ Q,
p(x1, x2|s1, s2, Q = q) ∈ BX1X2|S1S2

⊆ B′X1X2|S1S2
. (14)

Proof: The proof follows similar arguments to the proofs
of Thm. 1 and Prop. 1, thus, it is omitted here.
C. Discussion

Remark 4. The necessary conditions of Thm. 1 can be inter-
preted as representing decoding the relay assisted transmission
(i.e., multiple-antenna transmitter) at the destination based on
the destination’s channel output and side information. On the
other hand, the necessary conditions of Prop. 1 and of Thm. 2
can be interpreted as representing decoding at the destination
using the channel outputs and side information of both the
destination and the relay (i.e., multiple-antenna receiver).
Remark 5. The following proposition was established in [9]:
Proposition 2. ([9, Prop. 1]) Any source pair (S1, S2) that can
be transmitted reliably over the DM MARC with receiver side
information W , must satisfy the following constraints:

H(S1|S2,W )≤ I(X1, X3;Y |X2) (15a)
H(S2|S1,W )≤ I(X2, X3;Y |X1) (15b)
H(S1, S2|W )≤ I(X1, X2, X3;Y ), (15c)

for some input distribution p(x1, x2, x3).
Thm. 1 establishes necessary conditions which are at least

as tight as Prop. 2. Since conditioning reduces entropy the
RHSs of (4) are smaller than or equal to the RHSs of (15).
Furthermore, the constraint (1) is not accounted for in Prop. 2,
but is accounted for in Thm. 1. Therefore, as the LHSs of (4)
and (15) are the same, Thm. 1 provides necessary conditions
which are at least as tight as Prop. 2.
Remark 6. For independent sources, that is p(s1, s2) =
p(s1)p(s2), and W = W3 = φ, a combination of Thm. 1
and Thm. 2 specializes to the cut-set bound [12, Thm. 1].
In this case, the RHSs of (12) are identical to the first
term in the RHS of [12, Eqns. (7)], while the RHSs of
(4) are identical to the second term in the RHS of [12,
Eqns. (7)]. Furthermore, (5) and (13) are the same. Note
also that, for independent sources, σ2(P̃S1S2

) = 0, which
implies that σi(P̃X1X2

), σi(P̃X1X2|s1,1), σi(P̃X1X2|s2,1) and
σi(P̃X1X2|s1,1,s2,1) are all equal to zero. Therefore, X1 and
X2 are independent and conditions (6) and (14) always hold.
Finally, letting R1 , H(S1), R2 , H(S2) implies that
H(S1, S2) = R1+R2, and therefore a combination of Thm. 1
and Thm. 2, for independent sources, results in [12, Eqns. (7)].
Remark 7. Consider specializing Prop. 1, Thm. 1 and Thm. 2
to the MAC. For Prop. 1 and Thm. 2 this can be done by
setting X3 = Y3 = W3 = φ, while for Thm. 1 this requires
setting X3 = φ. In this case the conditions in (4), (10) and

Fig. 2. Primitive semi-orthogonal MARC (PSOMARC).

(12) are identical. However, note that in (11) a general joint
distribution p(v, s1, s2, w) is considered, while in (5) and (13)
Q ⊥⊥ (S1, S2,W ). Moreover, the required Markov chain of (1)
is not accounted for by the chain of Prop. 1, contrary to Thm. 1
and Thm. 2. Therefore, we conclude that when specialized to
the MAC scenario, Thm. 1 and Thm. 2 give the same bound
which is tighter than Prop. 1.

Setting X3 = Y3 =W3 = φ as well as W = φ, specializes
the model to the MAC with no side information at the receiver.
For this model, both Thm. 1 and Thm. 2 specialize to [4, Thm.
7], which establishes necessary conditions for the MAC with
correlated sources.

V. A NUMERICAL EXAMPLE
We now demonstrate the improvement of Thm. 1 and

Thm. 2 upon the cut-set bound [10, Ch. 18.1]. In order to
simplify the arguments, we consider a scenario with no side
information W = W3 = φ, and focus on the bound on
H(S1, S2). Before introducing the example we first recall the
JSCC achievability scheme presented in [7, Thm. 1], for the
case of W =W3 = φ. In particular, two of the six constraints
in [7, Thm. 1] involve H(S1, S2):

H(S1, S2) < I(X1, X2;Y3|V1, V2, X3) (16a)
H(S1, S2) < I(X1, X2, X3;Y ), (16b)

subject to a joint distribution that factorizes as
p(s1, s2)p(v1)p(x1|s1, v1)×

p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (17)
Next, we recall the primitive semi-orthogonal MARC (PSO-

MARC) model depicted in Figure 2 [5]. This is a special
MARC in which the relay-destination link is orthogonal to
all the other channels. This link has a finite capacity, denoted
by C3. Even though the relay uses an orthogonal channel, this
model still captures the main characteristics of the general
MARC. We assume neither the relay nor the destination has
side-information.

We consider a special PSOMARC and a source pair, for
which we show that the cut-set bound fails to indicate whether
reliable transmission is possible, while the new outer bounds
we propose here do indicate that reliable transmission of the
sources over the given channel is impossible.

Consider the PSOMARC defined by X1 = X2 = Y3 =
YS = {0, 1}, and the channel transition probabilities detailed
in Table I and II. We also let C3 = 0.1. The cut-set bound
constraint on the sum-rate of the PSOMARC, [5, Eqn. (9)], is
given in (18) at the top of next page.

Y3 \(X1, X2) (0,0) (0,1) (1,0) (1,1)
0 0.87 0.25 0.51 0.24
1 0.13 0.75 0.49 0.76

TABLE I
THE TRANSITION PROBABILITY p(y3|x1, x2).



H(S1, S2) ≤ Icut-set , max
p(x1,x2)

{
I(X1, X2;YS) + min

{
C3, I(X1, X2;Y3|YS)

}}
. (18)

H(S1, S2) ≤ Inew , max
p(x1,x2):σ2(P̃X1X2

)≤σ2(P̃S1S2
)

{
I(X1, X2;YS) + min

{
C3, I(X1, X2;Y3|YS)

}}
. (19)

H(S1, S2) < Isuff , max
X1↔S1↔S2↔X2

min
{
I(X1, X2;Y3), I(X1, X2;YS) + C3

}
. (20)

Y \(X1, X2) (0,0) (0,1) (1,0) (1,1)
0 0.23 0.19 0.65 0.91
1 0.77 0.81 0.35 0.09

TABLE II
THE TRANSITION PROBABILITY p(y|x1, x2).

Let (S1, S2) be a source-pair such that S1 = S2 = {0, 1},
with the joint distribution p(s1, s2) given in Table III.

S1 \S2 0 1
0 0 0.04
1 0.045 0.915

TABLE III
THE JOINT DISTRIBUTION, p(s1, s2) OF THE SOURCES.

For the transition probabilities defined in Tables I and II we
have Icut-set ≈ 0.516.3 Next, consider relaxed versions of (4c)
and (12c), with W =W3 = φ, specialized to the PSOMARC,
given in (19) at the top of this page. Note that (19) is less
restrictive than (4c) and (12c), as the maximization in (19)
includes only the restriction due to P̃X1X2

, while the restric-
tions due to the conditional distributions P̃X1X2|S1

, P̃X1X2|S2

and P̃X1X2|S1,S2
are ignored. Finally, consider the sufficient

conditions (16), specialized to the PSOMARC, given in (20)
at the top of this page.

For the joint source distribution in Table III, we have
H(S1, S2) ≈ 0.504 and the sufficient condition (20) is
evaluated as Isuff ≈ 0.274. Note that the cut-set necessary
condition in (18) is larger than H(S1, S2), and therefore it
does not indicate whether these sources can be transmitted
reliably. In contrast to (18), for the joint distribution given
in Table III we have Inew ≈ 0.485. Hence, our new necessary
condition in (19), explicitly indicates that reliable transmission
is not possible.

This example demonstrates the improvement of Thm. 1 and
Thm. 2 upon the cut-set bound.

Remark 8. This numerical example does not follow immedi-
ately from the results of Kang and Ulukus for the MAC, see
[4, Subsection III.C]. To see this, consider the PSOMARC
and sources defined in Tables I, II and III, and let C3 = 0.2
(instead of 0.1). Here, (18) is evaluated as Icut-set ≈ 0.600,
while (19) is evaluated as Inew ≈ 0.514. Moreover, recall
that H(S1, S2) ≈ 0.504. Hence, for C3 = 0.2, (19) fails
to indicate whether reliable transmission of the sources is
possible, while for C3 = 0.1, (19) explicitly indicates that
reliable transmission is impossible. This is in contrast to
(18) which fails to indicate whether reliable transmission is
possible, for both values of C3.

3Throughout this section, the numerical values were found via exhaustive
search. Note that the cut-set bound in (18) depends only on the channel
transition probabilities and not on the joint distribution of the sources.

VI. CONCLUSIONS

We have derived three new sets of single-letter necessary
conditions for reliable transmission of correlated sources over
DM MARCs. We have shown that the new conditions are at
least as tight as the previously known ones in the literature.
One of the new sets is in the spirit of a MAC bound,
while the other two sets follow from the broadcast bound.
In two of the new sets of conditions we have exploited the
Markov relationship between the sources and the channel
inputs to restrict the feasible set of joint distributions, while
still obtaining a computable characterization by constraining
the possible input distributions in terms of their spectral
properties rather than using n-letter constraints directly on the
conditional distributions. Finally, we have demonstrated that
the new necessary conditions improve upon the well known
cut-set bound, constructing an explicit numerical example. Our
results help in identifying the fundamental bounds on the level
of cooperation that can be achieved in distributed source-
channel communication networks.

APPENDIX A
PROOF OF THEOREM 1

Let P (n)
e → 0 for a sequence of encoders f (n)i , i = 1, 2, 3,

and decoders g(n). We use Fano’s inequality [10, Subsection
2.1], which states

H(Sn1 , S
n
2 |Ŝn1 , Ŝn2 )≤ 1 + nP (n)

e log |S1 × S2|
, nδ(P (n)

e ), (A.1)
where δ(x) is a non-negative function that approaches 1

n as
x→ 0. We also obtain

H(Sn1 , S
n
2 |Ŝn1 , Ŝn2 )

(a)

≥ H(Sn1 , S
n
2 |Ŝn1 , Ŝn2 ,Wn, Y n)

(b)
= H(Sn1 , S

n
2 |Wn, Y n)

(c)

≥ H(Sn1 |Sn2 ,Wn, Y n), (A.2)
where (a) follows from the fact that conditioning reduces en-
tropy; (b) follows from the fact that (Ŝn1 , Ŝ

n
2 ) is a deterministic

function of (Y n,Wn); and (c) follows from non-negativity of
the entropy function for discrete sources. Constraint (4a) is a
consequence of the following chain of inequalities:
n∑
k=1

I(X1,k, X3,k;Yk|S2,k, X2,k,Wk)

=

n∑
k=1

[
H(Yk|S2,k, X2,k,Wk)

−H(S2,k, Yk|X1,k, X2,k, X3,k,Wk)
]

(a)
=

n∑
k=1

[
H(Yk|S2,k, X2,k,Wk)

−H(Yk|S2,k, X
k
1,1, X

k
2,1, X

k
3,1,Wk, Y

k−1, Y k−13,1 )
]



(b)
=

n∑
k=1

[
H(Yk|S2,k, X2,k,Wk)

−H
(
Yk|Sn1 , Sn2 , Xk

1,1, X
k
2,1, X

k
3,1,

Wn,Wn
3,1, Y

k−1, Y k−13,1

)]
(c)

≥
n∑
k=1

[
H(Yk|Sn2 , X2,k,W

n, Y k−1)

−H(Yk|Sn1 , Sn2 ,Wn,Wn
3,1, Y

k−1)
]

(d)
=

n∑
k=1

[
H(Yk|Sn2 ,Wn, Y k−1)

−H(Yk|Sn1 , Sn2 ,Wn,Wn
3,1, Y

k−1)
]

=

n∑
k=1

I(Sn1 ,W
n
3,1;Yk|Sn2 ,Wn, Y k−1)

(e)
= I(Sn1 ,W

n
3,1;Y n|Sn2 ,Wn)

(f)

≥ I(Sn1 ;Y n|Sn2 ,Wn)

= H(Sn1 |Sn2 ,Wn)−H(Sn1 |Sn2 ,Wn, Y n)

(g)

≥ nH(S1|S2,W )− nδ(P (n)
e ), (A.3)

where (a) follows from the memoryless channel as-
sumption; (b) follows from the causal Markov relation-
ship (Sn1 , S

n
2 ,W

n,Wn
3,1) ↔ (S2,k, X

k
1,1, X

k
2,1, X

k
3,1,Wk,

Y k−1, Y k−13,1 ) ↔ Yk (see [13]); (c) follows from the fact
that conditioning reduces entropy; (d) follows from the fact
that X2,k is a deterministic function of Sn2 ; (e) follows from
the chain rule for mutual information; (f) follows from the
chain rule for mutual information and the non-negativity of
the mutual information; and (g) follows from the memoryless
sources and side information assumption and from equations
(A.1) and (A.2).

Following arguments similar to those that led to (A.3) we
can also show
H(S2|S1,W )

≤ 1

n

n∑
k=1

I(X2,k, X3,k;Yk|S1,k, X1,k,Wk) + δ(P (n)
e )

H(S1, S2|W )

≤ 1

n

n∑
k=1

I(X1,k, X2,k, X3,k;Yk|Wk) + δ(P (n)
e ). (A.4)

Note that the expressions: I(X1,k, X3,k;Yk|S2,k, X2,k,Wk),
I(X2,k, X3,k;Yk|S1,k, X1,k,Wk), and I(X1,k, X2,k, X3,k

;Yk|Wk), depend only on the marginal conditional distribution

p(x1,k, x2,k, x3,k|s1,k, s2,k)

= p(x1,k, x2,k|s1,k, s2,k)p(x3,k|s1,k, s2,k, x1,k, x2,k)

with given p(s1,k, s2,k, wk) and p(yk|x1,k, x2,k, x2,k). More-
over, note that X1,k is a function of Sn1 while X2,k is
a function of Sn2 . Hence, the Markov chains in (1) hold.
Therefore it follows that
p(x1,k, x2,k|s1,k, s2,k) ∈ BX1X2|S1S2

⊆ B′X1X2|S1S2
. (A.5)

Next, we introduce the time-sharing random variable Q uni-
formly distributed over {1, 2, . . . , n} and independent of all
other random variables. We can write the following

1

n

n∑
k=1

I(X1,k, X3,k;Yk|S2,k, X2,k,Wk)

=
1

n

n∑
k=1

I(X1,q, X3,q;Yq|S2,q, X2,q,Wq, Q = k)

= I(X1,Q, X3,Q;YQ|S2,Q, X2,Q,WQ)

= I(X1, X3;Y |S2, X2,W,Q), (A.6)

where X1 , X1,Q, X2 , X2,Q, X3 , X3,Q, Y , YQ, S2 ,
S2,Q and W ,WQ. Furthermore, since for all values of q we
have p(x1,q, x2,q|s1,q, s2,q, Q = k) = p(x1,k, x2,k|s1,k, s2,k)
which satisfies (A.5), then we have that for k = 1, 2, . . . , n
the following hold

p(x1,q, x2,q|s1,q, s2,q, Q = k) ∈ B′X1X2|S1S2
. (A.7)

Finally, note that for all k, the expressions and structural
constraints on the distribution chain are identical. Thus, from
(A.3), (A.4) and (A.6) it follows that

H(S1|S2,W ) ≤ I(X1, X3;Y |S2, X2,W,Q) + δ(P (n)
e )

H(S2|S1,W ) ≤ I(X2, X3;Y |S1, X1,W,Q) + δ(P (n)
e )

H(S1, S2|W ) ≤ I(X1, X2, X3;Y |W,Q) + δ(P (n)
e ). (A.8)

Finally, taking the limit as n→∞ leads to the constraints in
(4).

APPENDIX B
PROOF OF PROPOSITION 1

First, define the auxiliary RV:

Vk , (Wn
3,1, Y

k−1
3,1 ), k = 1, 2, . . . , n. (B.1)

Now, constraint (10a) is a consequence of the following chain
of inequalities:
n∑
k=1

I(X1,k;Yk, Y3,k|S2,k, X2,k,Wk, Vk) (B.2)

(a)
=

n∑
k=1

[
H(Yk, Y3,k|S2,k, X2,k,Wk,W

n
3,1, Y

k−1
3,1 )

−H(Yk, Y3,k|S2,k, X1,k, X2,k,Wk,W
n
3,1, Y

k−1
3,1 )

]
(b)
=

n∑
k=1

[
H(Yk, Y3,k|S2,k, X2,k,Wk,W

n
3,1, Y

k−1
3,1 )

−H(Yk, Y3,k|S2,k, X
k
1,1, X

k
2,1, X

k
3,1,

Wk,W
n
3,1, Y

k−1, Y k−13,1 )]

(c)

≥
n∑
k=1

[
H(Yk, Y3,k|Sn2 , X2,k,W

n,Wn
3,1, Y

k−1, Y k−13,1 )

−H(Yk, Y3,k|S2,k, X
k
1,1, X

k
2,1, X

k
3,1,

Wk,W
n
3,1, Y

k−1, Y k−13,1 )
]



(d)
=

n∑
k=1

[
H(Yk, Y3,k|Sn2 , X2,k, Y

k−1,Wn,Wn
3,1, Y

k−1
3,1 )

−H(Yk, Y3,k|Sn1 , Sn2 , Xk
1,1, X

k
2,1, X

k
3,1,

Wn,Wn
3,1, Y

k−1, Y k−13,1 )
]

(e)
=

n∑
k=1

[
H(Yk, Y3,k|Sn2 ,Wn,Wn

3,1, Y
k−1, Y k−13,1 )

−H(Yk, Y3,k|Sn1 , Sn2 , Xk
1,1, X

k
2,1, X

k
3,1,

Wn,Wn
3,1, Y

k−1, Y k−13,1 )
]

(f)

≥
n∑
k=1

[
H(Yk, Y3,k|Sn2 ,Wn,Wn

3,1, Y
k−1, Y k−13,1 )

−H(Yk, Y3,k|Sn1 , Sn2 ,Wn,Wn
3,1, Y

k−1, Y k−13,1 )
]

= H(Y n, Y n3 |Sn2 ,Wn,Wn
3,1)

−H(Y n, Y n3 |Sn1 , Sn2 ,Wn,Wn
3,1)

= I(Sn1 ;Y n, Y n3 |Sn2 ,Wn,Wn
3,1)

(g)

≥ I(Sn1 ;Y n|Sn2 ,Wn,Wn
3,1)

= H(Sn1 |Sn2 ,Wn,Wn
3,1)−H(Sn1 |Sn2 ,Wn,Wn

3,1, Y
n)

(h)

≥ H(Sn1 |Sn2 ,Wn,Wn
3,1)−H(Sn1 |Sn2 ,Wn, Y n)

(i)

≥ nH(S1|S2,W,W3)− nδ(P (n)
e ), (B.3)

where (a) follows from (B.1); (b) follows from the fact that
Xk

3,1 is a deterministic function of (Wn
3,1, Y

k−1
3,1 ) and from the

memoryless channel assumption; (c) follows from the fact that
conditioning reduces entropy; (d) follows from causality, [13];
(e) follows from the fact that X2,k is a deterministic function
of Sn2 ; (f) follows again from the fact that conditioning reduces
entropy; (g) follows from the chain rule for mutual information
and the nonnegativity of mutual information; (h) follows again
from the fact that conditioning reduces entropy; and (i) follows
from the memoryless sources and side information assumption
and from equations (A.1) and (A.2).

Following arguments similar to those that led to (B.3) we
can also show that

H(S2|S1,W,W3)

≤ 1

n

n∑
k=1

I(X2,k;Yk, Y3,k|S1,k, X1,k,Wk, Vk) + δ(P (n)
e )

H(S1, S2|W,W3)

≤ 1

n

n∑
k=1

I(X1,k, X2,k;Yk, Y3,k|Wk, Vk) + δ(P (n)
e ). (B.4)

Note that the mutual information expressions in (B.2)
and (B.4) depend only on the marginal conditional
distribution p(x1,k, x2,k, x3,k|s1,k, s2,k, wk, vk) with given
p(s1,k, s2,k, wk, vk) and p(yk, y3,k|x1,k, x2,k, x3,k). Next we
define the time-sharing random variable Q uniformly dis-
tributed over {1, 2, . . . , n} and independent of all other ran-
dom variables. We can write the following

1

n

n∑
k=1

I(X1,k;Yk, Y3,k|S2,k, X2,k,Wk, Vk)

=
1

n

n∑
k=1

I(X1,q;Yq, Y3,q|S2,q, X2,q,Wq, Vq, Q = k)

= I(X1,Q;YQ, Y3,Q|S2,Q, X2,Q,WQ, VQ)

= I(X1;Y, Y3|S2, X2,W, V ), (B.5)

where X1 , X1,Q, X2 , X2,Q, Y , YQ, Y3 , Y3,Q, S2 ,
S2,Q, W , WQ and V , (VQ, Q). Note that (X1,k, X2,k)
and X3,k are independent given (S1,k, S2,k, Vk). Moreover,
the following Markov chain hold (S1,k, S2,k) ↔ Vk ↔ X3,k.
Therefore, for v̄ = (v, k) we have

Pr{X1 = x1, X2 = x2, X3 = x3|S1 = s1, S2 = s2, V = v̄}
= Pr{X1 = x1, X2 = x2|S1 = s1, S2 = s2, V = v̄}×

Pr{X3 = x3|V = v̄}. (B.6)
Hence, the probability distribution is of the form given in (11).
From (B.3)–(B.5), we have

H(S1|S2,W,W3) ≤ I(X1;Y, Y3|S2, X2,W, V ) + δ(P (n)
e )

H(S2|S1,W,W3) ≤ I(X2;Y, Y3|S1, X1,W, V ) + δ(P (n)
e )

H(S1, S2|W,W3) ≤ I(X1, X2;Y, Y3|W,V ) + δ(P (n)
e ).

Finally, taking the limit as n→∞ and letting P (n)
e → 0 leads

to the constraints in (10).
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